US009178903B1

a2z United States Patent (10) Patent No.: US 9,178,903 B1
Kaplan et al. 45) Date of Patent: Nov. 3, 2015
(54) SIMULATING A BOT-NET SPANNING A 2007/0117536 Al* 5/2007 Walkeretal. 455/404.2
PLURALITY OF GEOGRAPHIC REGIONS 2012/0078643 Al* 3/2012 Nagpal et al. 705/1.1
2013/0174256 Al* 7/2013 Powers 726/23
*
1) Appicnt: SYNACKINC. Mesko P CA US) B AT 00 Fm e ey
2014/0189081 Al™* 7/2014 MOITiS ..oovvvevverceieiinnne 709/223
(72) Inventors: Jay Kaplan, Palo Alto, CA (US); Mark))
Kuhr, Los Altos, CA (US); Vlad Cretu, * cited by examiner
San Francisco, CA (US)
) Primary Examiner — Abu Sholeman
(73) Assignee: Synack, Inc., Menlo Park, CA (US) Assistant Examiner — Maung Lwin
(*) Notice: Subject to any disclaimer, the term of this](37.4) 1‘14 ZZOTI?I}; Agent, or Firm — Hickman Palermo Becker
patent is extended or adjusted under 35 1ngham
U.S.C. 154(b) by O days.
(57) ABSTRACT
(21) Appl. No.: 14/558,096 . . .
Computer systems and methods in various embodiments are
(22) Filed: Dec. 2,2014 configured to test the security of a server computer by simu-
lating a wide range of attacks from one or more bot-nets. In an
(51) Int.CL embodiment, a computer system including a memory; a pro-
GOGF 2100 (2013.01) cessor in a home geographic region coupled to the memory; a
HO4L 2906 (2006.01) plurality of network cards in the home geographic region,
(52) U.S.CL coupled to the processor and the memory; wherein each net-
CPC ... HO4L 63/1433 (2013.01); HO4L 2463/144 work card in the plurality of network cards is configured to
(2013.01) send one or more requests to a remote server computer
(58) Field of Classification Search thrqugh a geggraphic region, of a plurality of ggographic
None regions, that is different than the home geographic region;
See application file for complete search history. wherein, for each network card of the plurality of network
cards, the processor is configured to store a geo-mapping,
(56) References Cited which indicates the certain geographic region the network
card is configured to send the one or more requests to the
U.S. PATENT DOCUMENTS remote server computer through.
5,502,816 A * 3/1996 Gawlicketal. 709/227
2003/0009696 A1* 1/2003 BunkerV.etal. ... 713/201 18 Claims, 7 Drawing Sheets

210 GENERATE A PLURALITY OF
REQUESTS BASED ON ONE OR MORE
PARAMETERS

}

AREGION-REQUEST DISTRIBUTION VALUE

220 FOR EACH REQUEST, DETERMINE THAT THE REQUEST
SHOULD BE RECEIVED BY AREMOTE SERVER COMPUTER
THROUGH A PARTICULAR GEOGRAPHIC REGION BASED ON

l

CARD IS CONFIGURED TO SEND REQUESTS
THROUGH THE PARTICULAR GEOGRAPHIC
REGION

30 DETERMINE THAT A PARTICULAR NETWORK

l

240 SEND THE REQUEST TO THE
REMOTE SERVER COMPUTER FROM THE
PARTICULAR NETWORK CARD

U.S. Patent Nov. 3, 2015 Sheet 1 of 7 US 9,178,903 B1

SYSTEM 100\ F|G 1

GEOGRAPHIC REGION 11

SCAN HEAD COMPUTER 120

| PROCESSING LOGIC 130 |
[NETWORK CARD 132] [NETWORK CARD 134| '
; f : ,.
' ' B B CARRIER
| ROUTER 140 | ; 2 :
GEOGRAPHIC !
REGION190
PROXY
COMPUTER ,
182 ‘e ——=SERVER COMPUTER 150
GEOGRAPHIC
REGION 180

U.S. Patent Nov. 3, 2015 Sheet 2 of 7 US 9,178,903 B1

FIG. 2

210 GENERATE A PLURALITY OF
REQUESTS BASED ON ONE OR MORE
PARAMETERS

)

220 FOR EACH REQUEST, DETERMINE THAT THE REQUEST

SHOULD BE RECEIVED BY A REMOTE SERVER COMPUTER

THROUGH A PARTICULAR GEOGRAPHIC REGION BASED ON
AREGION-REQUEST DISTRIBUTION VALUE

l

230 DETERMINE THAT A PARTICULAR NETWORK
CARD IS CONFIGURED TO SEND REQUESTS
THROUGH THE PARTICULAR GEOGRAPHIC

REGION

Y
240 SEND THE REQUEST TO THE
REMOTE SERVER COMPUTER FROM THE
PARTICULAR NETWORK CARD

U.S. Patent

Nov. 3, 2015

Sheet 3 of 7

US 9,178,903 B1

SYSTEM 30 SCAN HEAD COMPUTER 320 F|G 3 -------
D\ | PROCESSING LOGIC 322 | p
[NETWORK CARD 324| [NETWORK CARD 326+t—— ! GEQGRAPHIC
T \ REGION392
| \ ,"
CONSULTANT SCAN HEAD COMPUTER 330
COMPUTER 302 N
| PROCESSING LOGIC 332 |
[NETWORK CARD 334| [NETWORK CARD 3361 e
f
| , :
TEST MODULE MANAGER GEOGRAPHIC %
COMPUTER 310 EMBEDDED DEVICE REGION 3934
340
TEST CONTROL
LOGIC 312 APPLICATION 344 ST T e
PROGESSING GEOGRAPHIC
LOGIC 342 REGION 398 r
- TESTNGPROXY | e
SERVER COMPUTER 350
WEB SERVER
DATA STORE 304
o REQUEST COMPUTER 390
PROCESSING LOGIC
352

U.S. Patent Nov. 3, 2015

FIG. 4

10 RECEIVE TESTING MODULE

Sheet 4 of 7 US 9,178,903 B1

A,
420 DETERMINE FREQUENCY AT WHICH
THE TESTING MODULE SHOULD BE
EXECUTED

430 DETERMINE DEPENDENCIES, IF ANY,
ON OTHER TESTING MODULES

40 DETERMINE WHICH HARDWARE

CONFIGURATION IS REQUIRED

h,

YES 49015 ANOTHER

450 ENQUEUE A JOB THAT IDENTIFIES A

TEST MODULE A
DEPENDENT?

480 TEST MODULE
EXECUTED
CORRECTLY?

NO

470 DEQUEUE THE JOB

f

460 RECEIVE REQUEST FOR A TEST

TESTING MODULE

MODULE WITH ONE OR MORE

PARAMETERS

U.S. Patent Nov. 3, 2015 Sheet 5 of 7 US 9,178,903 B1

FIG. 5

TEST
MODULE
510

DEPENDENCY REFERENCE 511

TEST
MODULE
520

TEST
MODULE

530
T FORWARD REFERENCE 531

TEST
MODULE
524

U.S. Patent Nov. 3, 2015 Sheet 6 of 7 US 9,178,903 B1

FIG. 6

610 REQUEST ATESTING MODULE TO
EXECUTE BASED ON FEATURES OF A

y

SCAN HEAD
y
620 RECEIVE THE TESTING MODULE AND | 670 REQUEST THE SECOND TESTING
ONE OR MORE PARAMETERS MODULE

A 4
630 SEND A PLURALITY OF REQUESTS
THROUGH A PLURALITY OF GEOGRAPHIC
REGIONS

660 TESTING MODULE
REFERENCES A
SECOND TESTING

MODULE?

A

40 COLLECT DATA RECEIVED FROM

THE PLURALITY OF REQUESTS

50 STORE THE DATA IN ADATA STORE

U.S. Patent Nov. 3, 2015 Sheet 7 of 7 US 9,178,903 B1

SERVER

MAIN ROM STORAGE 730

MEMORY DEVICE
706 708 710

DISPLAY 728

7] [Ga—

INPUT DEVICE <_ At_> BUS
114 ‘ 102
|
|
|
|
|
CURSOR ‘
CONTROL <: ! PROCESSOR COMMUNICATION LOCAL
e ! 704 INTERFACE NETWORK
! 718
|

HOST

FIG.7 a4

US 9,178,903 B1

1
SIMULATING A BOT-NET SPANNING A
PLURALITY OF GEOGRAPHIC REGIONS

FIELD OF THE DISCLOSURE

The present disclosure generally relates to security tech-
niques applicable to computer security, and relates more spe-
cifically to improved techniques for detecting vulnerabilities
of'a web server computer by simulating a bot-net.

BACKGROUND

The approaches described in this section are approaches
that could be pursued, but not necessarily approaches that
have been previously conceived or pursued. Therefore, unless
otherwise indicated, it should not be assumed that any of the
approaches described in this section qualify as prior art
merely by virtue of their inclusion in this section.

Server computers may provide users with content through
one or more client devices. The content may include social
data, such as who knows whom, or personal financial infor-
mation from a bank.

A malicious user may use software, often referred to as a
“bot”, which imitates a client computer, or an application
executed by the client computer, by receiving instructions
from a web server and generating requests based on those
instructions. For convenience of expression a “bot” may be
software and/or hardware, such as a browser running on a
desktop computer, that is configured to automatically send
requests with, and/or for, data to a server computer. For
example, a bot may receive a web page, and generate a request
based on a link defined in the web page, as if the link was
selected by a legitimate user. Also for example, a bot may
generate and send a request with data assigned to one or more
parameters to simulate a user submitting data to a web server
through a browser.

A proactive server computer may determine that a particu-
lar client computer is a bot based on one or more patterns
and/or factors, such as receiving numerous requests from a
particular client computer within a short period of time. In
response, the server computer may block the client computer.
For example, if a web site hosting an online dictionary
receives 10,000 requests for definitions of 10,000 different
words in an hour from the same client computer, then the
server computer may determine that the client computer is a
bot, and block any future requests from that client computer.

To prevent a server computer from determining that a par-
ticular client computer is a bot, a malicious user may create a
“bot-net”: a network of numerous computers distributed over
a range of geographic regions, which may coordinate an
attack against a server computer without causing the server
computer to determine that any computer in the bot-net is a
bot. Malicious users may use bot-nets to commit many types
of unauthorized acts, crimes or computer fraud, such as con-
tent scraping, ratings manipulation, fake account creation,
reserving rival goods attacks, ballot stuffing attacks, pass-
word snooping, web site scraping attacks, vulnerability
assessments, and stack fingerprinting attacks. For purposes of
illustrating a clear example, assume a bot-net includes 400
infected computers, each of which is configured to make 25
requests for definitions of 25 different words over an hour.
The proactive server computer may not register any of the
client computers in the bot-net as a bot, because each com-
puter is only requesting definitions for 25 words per hour. If
each computer in the bot-net makes a request for a different
word, then the bot-net may collect definitions for 10,000

10

25

30

35

40

45

55

2

words combined. Each computer in the bot-net may send the
definitions to a server computer controlled by the malicious
user.

A web site developer or administrator may attempt to
implement countermeasures to prevent attacks from bot-nets,
but testing those countermeasures can be difficult or expen-
sive. For example, a web site developer may create a bot-net
by setting up hundreds of servers in data centers around the
world, and writing complex software to simulate a bot-net.
Doing so is expensive and time-consuming. Furthermore,
malicious users create new attacks for bot-nets to perform.
Writing new, often more complex software to simulate new
bot-net attacks using computers in data centers around the
world may be difficult and expensive.

SUMMARY

The appended claims may serve as a summary of the inven-
tion.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:

FIG. 1 illustrates a computer system for simulating a multi-
region bot-net from a single geographic region in an example
embodiment.

FIG. 2 illustrates a process for simulating a bot-net in an
example embodiment.

FIG. 3 illustrates a computer system for detecting a plural-
ity of vulnerabilities and errors in a web-server by simulating
a bot-net in an example embodiment.

FIG. 4 illustrates a process for executing one or more test
modules in an example embodiment.

FIG. 5 illustrates a hierarchy of dependencies between test
modules in an example embodiment.

FIG. 6 illustrates a process for requesting and executing
one or more test modules on a scan head in an example
embodiment.

FIG. 7 illustrates a computer system upon which an
embodiment may be implemented.

While each of the drawing figures illustrates a particular
embodiment for purposes of illustrating a clear example,
other embodiments may omit, add to, reorder, and/or modify
any of the elements shown in the drawing figures. For pur-
poses of illustrating clear examples, one or more figures may
be described with reference to one or more other figures, but
using the particular arrangement illustrated in the one or more
other figures is not required in other embodiments.

DETAILED DESCRIPTION

In the following description, for the purposes of explana-
tion, numerous specific details are set forth in order to provide
a thorough understanding of the present invention. It will be
apparent, however, that the present invention may be prac-
ticed without these specific details. In other instances, well-
known structures and devices are shown in block diagram
form in order to avoid unnecessarily obscuring the present
invention.

Embodiments are described herein according to the fol-
lowing outline:

1.0 General Overview

2.0 Example Computer System for Simulating a Bot-Net

from a Single Geographic Region

2.1 Scan Head Computer

2.2 Router

2.3 Region-Request Distribution Value

US 9,178,903 B1

3

3.0 Process for Simulating a Bot-Net
3.1 Generating Data for Requests Sent through a Plural-
ity Of Geographic Regions
3.2 Sending and Receiving Data through a Plurality of
Regions
3.3 Detecting Services and Performing Attacks over One
or More Protocols using a Simulated Bot-Net
4.0 Example Computer System for Simulating a Plurality
of Attacks from one or more Bot-Nets using a Library of
Test Modules
4.1 Test Module Manager Computer
4.2 Scan Head Computers
4.3 Embedded Device
4.4 Testing Proxy Server Computer
4.5 Storage and Memory
4.6 Consultant Computers
4.7 Test Modules
5.0 Process Overview
5.1 Receiving a Plurality of Test Modules
5.2 Selecting Test Modules to Execute
5.2.1 Scheduling Execution of Test Modules
5.2.2 Determining Module Dependencies
5.2.2.1 Executing Test Modules based on Depen-
dencies
5.2.3 Selecting System and/or Hardware Configura-
tions
5.3 Distributing Test Modules to be Executed on one or
more Computers
5.4 Executing a Test Module
5.4.1 Simulating a Bot-Net Based on a Test Module
5.4.2 Automatically Executing a Test Module Refer-
enced by a Recently Executed Test Module
5.5 Verifying the Test Modules Executed Correctly
5.6 Executing more than one Test Module
6.0 Re-executing Modules after Determining a Failure has
Occurred Using a Matrix or State Table
7.0 Implementation Mechanisms—Hardware Overview
8.0 Other Aspects of Disclosure

1.0 General Overview

In an embodiment, a computer system comprises a
memory in a home geographic region; a processor in the
home geographic region coupled to the memory; a plurality of
network cards in the home geographic region, coupled to the
processor and the memory; wherein each network card in the
plurality of network cards is configured to send one or more
requests to a remote server computer through a certain geo-
graphic region, of a plurality of geographic regions, that is
different than the home geographic region; wherein, for each
network card of the plurality of network cards, the processor
is configured to store in the memory a geo-mapping, of a
plurality of geo-mappings, wherein the geo-mapping indi-
cates the certain geographic region the network card is con-
figured to send the one or more requests to the remote server
computer through.

In an embodiment, the computer system comprises a pro-
cessing logic coupled to the memory, the processor, and the
plurality of network cards, wherein the processing logic is
configured to, generate a plurality of requests, and for each
request of the plurality of requests: determine that the request
should be received by the remote server computer through a
particular geographic region based on a region-request distri-
bution value; determine that a particular network card of the
plurality of network cards is configured to send requests
through the particular region; send the request to the remote
server computer through the particular network card.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

In an embodiment, the computer system comprises a pro-
cessing logic coupled to the memory, the processor, and the
plurality of network cards, wherein the processing logic is
configured to: receive a credential from a device, which an
application executed on the device used to authenticate with
the remote server computer; send a plurality of requests,
which include the credential, through two or more network
cards, of the plurality of network cards, wherein each network
card of the two or more network cards is associated with a
different geographic region.

In an embodiment, the computer system comprises a pro-
cessing logic coupled to the memory, the processor, and the
plurality of network cards, wherein the processing logic is
configured to execute a plurality of testing modules; a man-
agement logic coupled to the memory, the processor, and the
processing logic, wherein the management logic is config-
ured to, for each testing module of the plurality of testing
modules, determine whether one or more conditions associ-
ated with the testing module are satisfied, and if so, cause the
processing logic to execute the testing module.

In an embodiment, a computer system comprises a first
scan head comprising a first memory, a first processor, and a
first plurality of network cards in a home geographic region,
wherein each network card in the first plurality of network
cards is configured to send one or more network security
testing requests to a remote server computer through a certain
geographic region, of a first plurality of geographic regions,
that is different than the home geographic region; a second
scan head comprising a second memory, a second processor,
and a second plurality of network cards in the home geo-
graphic region, wherein each network card in the second
plurality of network cards is configured to send one or more
network security testing requests to the remote server com-
puter through another particular geographic region, of a sec-
ond plurality of geographic regions, that is different than the
home geographic region; wherein the first plurality of geo-
graphic regions is different than the second plurality of geo-
graphic regions.

In an embodiment, a method comprises: configuring a
plurality of network cards in a home geographic region to
send requests through a plurality of geographic regions that
are different than the home geographic region; for each net-
work card of the plurality of network cards, generating a
geo-mapping, of a plurality of geo-mappings, that indicates a
certain geographic region that the network card is configured
to send the one or more requests through; generating a plu-
rality of requests, and for each request of the plurality of
requests: determining that the request should be received by a
remote server computer through a particular geographic
region based on a region-request distribution value; determin-
ing, based on the plurality of geo-mappings, that a particular
network card of the plurality of network cards is configured to
send requests through the particular region; sending the
request to the remote server computer through the particular
network card.

Embodiments discussed herein provide numerous benefits
and improvements over the general idea of increasing the
resistance of server computer to bot-net attacks. For example,
one or more of the embodiments discussed herein may reduce
the complexity and cost in simulating bot-net attacks from
client computers from a plurality of geographic regions. One
or more of the embodiments discussed herein may employ an
interdependent module-based system to selectively deter-
mine whether or not a server computer may be vulnerable to
one or more particular attacks, thus reducing the time to
determine which one or more vulnerabilities a server com-
puter may have, if any. One or more of the embodiments

US 9,178,903 B1

5

discussed herein may allow a server computer to use less
computational resources because a plurality of client comput-
ers need not be hosted in data centers in many of different
geographic regions. Furthermore, a single computer in a
single geographic region may be used to appear to be multiple
client computers distributed across multiple geographic
regions.

2.0 Example Computer System for Simulating a
Bot-Net from a Single Geographic Region

FIG. 1 illustrates a computer system for simulating a multi-
region bot-net from a single geographic region in an example
embodiment. A “multi-region” bot-net may be a bot-net
wherein, from the point of view of'a server computer, requests
appear to be coming from client computers in different geo-
graphic regions. In FIG. 1, system 100 includes scan head
computer 120 and router 140 in geographic region 110, proxy
computer 182 in geographic region 180, carrier 192 in geo-
graphic region 190, and server computer 150 communica-
tively coupled over one or more computer networks. A carrier
may be a service provider that may assign one or more Inter-
net Protocol (“IP”) associated with a particular geographic
region to a computer or computing device, such as scan head
computer 120, network card 134, and/or router 140. Server
computer 150 may be a computer that executes one or more
services that receive, and/or send data to, one or more other
computers. The services may include, among other things,
web services, file transfer services, and/or data storage ser-
vice.

A computer may be one or more physical computers, vir-
tual computers, and/or computing devices. As an example, a
computer may be one or more server computers, cloud-based
computers, cloud-based cluster of computers, virtual
machine instances or virtual machine computing elements
such as virtual processors, storage and memory, data centers,
storage devices, desktop computers, laptop computers,
mobile devices, and/or any other special-purpose computing
devices. Any reference to “a computer” herein may mean one
or more computers, unless expressly stated otherwise.

2.1 Scan Head Computer

Scan head computer 120 may be a computer with a plural-
ity of network cards. In the example illustrated in FIG. 1, scan
head computer 120 includes network card 132 and network
card 134. Each network card is configured to send and receive
data from server computer 150 through a different geographic
region.

Scan head computer 120 comprises processing logic 130,
which may be hardware, and/or software executed on scan
head computer 120, configured to send requests to, and
receive data from, server computer 150 through a plurality of
different geographic regions. For example, processing logic
130 may maintain “geo-mappings” that indicate network card
132 is configured to send and receive data through geographic
region 180, and network card 134 is configured to send and
receive data through geographic region 190. The geo-map-
pings may be assigned dynamically and/or stored in-memory
and/or in non-volatile storage. A geo-mapping may indicate
which IP address is assigned to, and/or associated with, a
network card from a server computer’s point of view. Two
geo-mappings that map two network cards to the same geo-
graphic region may be non-sequential. For example, a first
network card may be associated with a first IP address in a first
geographic region: 38.104.134.186; a second network card
may be associated with a second, non-sequential IP address in
the same, first geographic region: 38.104.134.122.

10

15

20

25

30

35

40

45

50

55

60

65

6

For purposes of illustrating a clear example, scan head
computer 120 has two network cards; however, scan head
computer 120 may include many more network cards. Each
network in scan head computer 120 is mapped to a different
geographic region; however, scan head computer 120 may
include more than one network card that is associated with the
same geographic region.

In FIG. 1, each network card is configured to send and
receive data from server computer 150 through geographic
regions that are different than the “home” geographic region
that scan head computer 120 and router 140 are located in;
however, one or more network cards may be configured to
send and receive data from the home geographic region,
which in this example is geographic region 110. A “home”
geographic region may be a region that a scan head with a
plurality of networks cards, and/or a router configured to map
the network cards to a plurality of geographic regions, is
located in and/or connected through.

2.2 Router

Router 140 may route data to and/or from a plurality of
network cards to and/or from a plurality of different geo-
graphic regions. For purposes of illustrating a clear example,
assume that network card 132 is connected to a first input port
in router 140, and network card 134 is connected to a second
input port in router 140. Router 140 may map the first input
port to a first output port that is configured to send and/or
receive data through proxy computer 182 in geographic
region 180. Router 140 may map the second input port to a
second output port that is configured to send and/or receive
data through carrier 192 in geographic region 190. A geo-
mapping that corresponds to a network card may indicate
which input port the network card is coupled to, and/or which
output port is mapped to the input port.

If router 140 receives data, such as a request for server
computer 150, from network card 132 through the first input
port, then router 140 may route the data to server computer
150 through the first output port and proxy computer 182,
which may have an IP address associated with geographic
region 180. If router 140 receives data through the first output
port from proxy computer 182, then router 140 may route the
data to network card 132 through the first input port. Accord-
ingly, from the point of view of server computer 150, data sent
to, and/or received from, network card 132 appears to be from
geographic region 180 based on the IP address of proxy
computer 182.

If router 140 receives data, such as a request for server
computer 150, from network card 134 through the second
input port, then router 140 may route the data to server com-
puter 150 through the second output port and carrier 192,
which may assign an IP address to the second output port of
router 140 that is associated with geographic region 190.
Accordingly, from the point of view of server computer 150,
data sent to, and/or received from, network card 134 appears
to be from geographic region 190 based on the IP address
assigned to router 140 by carrier 192.

1P addresses associated with the same geographic region
and assigned to more than one router port and/or network card
may be non-sequential. Requests coming from sequential IP
addresses may appear to be working in concert with each
other. Accordingly, if sequential IP addresses are associated
with two router ports and/or network cards, then processing
logic 130, an administrator, and/or other logic, may request a
new IP address for at least one router port and/or network
card. For example, a geo-mapping may indicate which IP
address is associated with a router port and/or network card.
If processing logic 130 determines that two router ports and/
or network cards are assigned sequential IP addresses based

US 9,178,903 B1

7

on the corresponding geo-mappings, then processing logic
130 may request a difterent IP address for at least one router
port and/or network card and update the corresponding geo-
mapping(s) with the new IP address(es). Thus, to a server
computer, the two router ports and/or network cards may
appear to be separate client computers that are not working in
concert with each other.

In FIG. 1, router 140 is coupled to, and routes data to and/or
from, network cards in the same computer. However, router
140 may be connected to, and route data to and/or from, one
or more network cards from a plurality of different comput-
ers.

In FIG. 1, each output port in router 140 is configured to
send and/or receive data from server computer 150 through
geographic regions that are different than the home geo-
graphic region that scan head computer 120 and router 140
are located in; however, one or more output ports may be
configured to send and/or receive data from the home geo-
graphic region, which in this example is geographic region
110.

Router 140 may be hardware, such as a router or hub,
and/or software, communicatively coupled to each network
card. In FIG. 1, router 140 is a separate computer than scan
head computer 120; however, router 140 and scan head com-
puter 120 may be the same computer.

2.3 Region-Request Distribution Value

A region-request distribution value may be a value, data
structure, and/or other system or method that defines how
many requests should be sent, and/or the rate at which each
request should be sent, through each region, IP address, and/
or network card. For example, a region-request distribution
value may indicate that 50 requests per hour should be made
by each region. If more than one network card is configured to
send requests through the same region, then each network
card may send requests until 50 total requests are sent by the
plurality of network cards. Additionally or alternatively, a
region-request distribution value may indicate particular
regions and/or IP addresses that one or more requests should
be sent through.

Additionally or alternatively, the region-request distribu-
tion value may define how many requests should be sent
through each IP address, and/or network card, in each region,
and/or the rate at which each request should be sent through
each IP. For purposes of illustrating a clear example, assume
a region-request distribution value indicates no more than 50
requests should be sent per region, and that no more than 25
requests per hour sent per IP address and/or network card. If
one network card is mapped to a first region, then the network
card may send up to 25 requests through the first region per
hour. If two network cards are mapped to a second region and
each network card is assigned a different IP address, then both
network cards may send up to 25 requests per hour, for a total
of 50 requests, through the second region. If three network
cards are mapped to a third region and each are assigned a
different IP address, then each network card may send up to
25 requests per hour until a total of 50 requests are sent
through the third region. Accordingly, of the three network
cards mapped to the third region, the first card may send 10
requests, the second card may send 25 requests, and the third
card may send 15 requests.

Additionally or alternatively, a region-request distribution
value may indicate the amount of time that should elapse
between requests for each region, network card, and/or IP
address. For example, a region-request distribution value may
indicate that a network card should wait a particular number
of seconds after sending a first request before sending a sec-
ond request. The region-request distribution value may indi-

20

25

30

40

45

55

60

8

cate that each network card mapped to the same particular
region should wait a particular amount of time after sending a
first request before sending a second request.

The region-request distribution value need not assign the
same number of requests to the same region, IP address,
and/or network card. For example, the region-request distri-
bution value may indicate that one or more network cards
assigned to a first region should send requests to a server
computer according to a first frequency, and one or more
network cards assigned to a second region should send
requests to the same server computer according to a second
frequency that is different than the first frequency.

A region-request distribution value may indicate that one
region should send more requests than another. For example,
if a web server computer serves web pages in English, and
then receives 500 requests from an IP address assigned to a
carrier in China over a period of an hour, then the web server
computer may raise a red flag. In response, the web server
computer may block future requests from that IP address.

A region-request distribution value may also define a vari-
able frequency over region, time, and/or IP address. For pur-
poses of illustrating a clear example, assume that geographic
region 180 is associated with a “U.S. East Region”, and
geographic region 190 is associated with a “U.S. West
Region”. The region-request distribution value may indicate
that processing logic 130 should send more requests through
geographic region 180 than geographic region 190 from 8:00
PM to 9:59 PM Eastern Time, and fewer requests through
geographic region 180 than geographic region 190 from
10:00 PM to 11:59 PM Eastern.

A region-request distribution value may be modified and/
or defined by a simulation (referred to herein as atest module)
and/or an administrator. For example, an administrator may
set a default region-request distribution value. Additionally or
alternatively, a particular region-request distribution value
may be associated with a particular simulation, which pro-
cessing logic 130 may use to override a default region-request
distribution value.

3.0 Process for Simulating a Bot-Net

FIG. 2 illustrates a process for simulating a bot-net in an
example embodiment. For purposes of illustrating a clear
example, assume the following: processing logic 130 is con-
figured to simulate a bot-net gathering data from a web site by
requesting web pages from server computer 150, and each
web page served by server computer 150 in response to a
request with a particular word contains one or more defini-
tions of the particular word. FIG. 2, as well as FIG. 4 and F1G.
6, may serve as plans or instructions with which a person of
skill may prepare or code one or more computer programs,
other software elements such as methods or scripts, or other
logic that is configured to perform the steps that are shown in
the blocks of the drawing figures using any of a variety of
programming languages or environments including but not
limited to JAVA, C++, OBJECTIVE-C, C, and design lan-
guages that are used to define gate structures of FPGAs or
ASICs. In other words, FIG. 2, FIG. 4, FIG. 6 illustrate
algorithms that can be used as a basis for coding or program-
ming functional logic or programs that implement the pro-
cesses that are depicted in the drawing figures.

3.1 Generating Data for Requests Sent Through a Plurality
of Geographic Regions

In step 210, a computer generates a plurality of requests
based on one or more parameters. For example, processing
logic 130 may generate 10,000 URLs, each of which may
identify a different word.

US 9,178,903 B1

9

In step 220, the computer, for each request, determines that
the request should be received by a remote server computer
through a particular geographic region based on a region-
request distributions value. For purposes of illustrating a clear
example, assume a region-request distribution value indicates
that each available region should be assigned an equal num-
ber of requests. Accordingly, processing logic 130 may assign
5,000 URLs to each region: geographic region 180 and geo-
graphic region 190.

In step 230, the computer may determine that a particular
network card is configured to send requests through the par-
ticular geographic region. For purposes of illustrating a clear
example, assume processing logic 130 maintains two geo-
mappings: the first geo-mapping indicates that network card
132 sends and/or receives data through geographic region
180, and the second geo-mapping indicates that network care
134 sends and/or receives data through geographic region
190. Accordingly, processing logic 130 may assign the first
5,000 URLs to network card 132 based on the first geo-
mapping, and the second 5,000 URLs to network card 134
based on the second geo-mapping

Network cards that are assigned to the same region may be
assigned different URLs. For example, if one or more geo-
mappings indicate that a plurality network cards are associ-
ated with the same geographic region, then each network card
associated with the same geographic region may be assigned
an equal share of the URLSs assigned to that region.

3.2 Sending and Receiving Data Through a Plurality of
Regions

In step 240, the computer sends a request to the remote
server computer from the particular network card. For pur-
poses of illustrating a clear example, assume processing logic
130 has a default region-request distribution value indicating
that 60 requests may be sent each hour from each unique IP
address. Processing logic 130 may cause network card 132
and network card 134 to send a request each minute through
geographic region 180 and geographic region 190, respec-
tively.

Processing logic 130 may cause network cards to wait
between requests. Continuing from the previous example, if
network card 132 gets a response to a particular request from
server computer 150 within two seconds, then processing
logic 130 may cause network card 132 to wait for some
amount of time, such as 58 seconds. Otherwise, if network
card 132 receives a response within two seconds of every
request, then network card 132 may send all 60 requests
within the first two minutes. A human reading definition(s) of
60 words over the course of an hour may be a plausible use
case. Therefore, server computer 150 may allow 60 requests
from the same network card and/or IP address over an hour.
However, few, if any, humans could read definitions for 60
words in less than two minutes, and is therefore not a plau-
sible use case. Therefore, server computer 150 may determine
that the network card and/or IP address, which is sending a
request every two seconds, is a bot and block future requests
from the network card and/or the IP address.

In the example above, after the URLSs are generated, each
URL is assigned to a geographic region and/or network card.
However, URLs, parameters, and/or any other data may be
iteratively generated and/or assigned to one or more geo-
graphic regions and/or network cards before all the URLs,
parameters, and/or other data elements are generated and/or
determined.

3.3 Detecting Services and Performing Attacks Over One
or More Protocols Using a Simulated Bot-Net

The example above may be performed over a web-based
protocol, such as HyperText Transfer Protocol (“HTTP”),

10

15

20

25

30

35

40

45

50

55

60

65

10

Secure HyperText Transfer Protocol (“HTTPS”), and/or
SPDY. However, a bot may perform a variety of attacks over
a variety of protocols. For example, a bot may make several
requests to several different ports to determine which ports a
server is responsive to, and/or which services a server is
executing. Particular ports that are actively waiting for, and/or
responding to, requests may indicate which services are avail-
able on a server computer, and potentially, are susceptible to
attack. For example, if a server responds to a request over port
22, then the server may support a cryptographic network
protocol commonly referred to a Secure Shell (“SSH”),
which may be susceptible to a first set of attacks. If a server
responds a request over port 21, then the server may support
File Transfer Protocol (“FTP”), which may be susceptible to
a second, different set of attacks. After a bot determines that
a particular port is open, or that a particular service is avail-
able on a server computer, the bot may execute a set of
targeted attacks against the particular service to gain unau-
thorized access to, execute malicious commands on, and/or
submit false data to, the server computer.

Processing logic 130 may cause network cards, such as
network card 132 and network card 134, to simulate a bot-net
performing a variety of attacks over a variety of protocols. For
example, processing logic 130, and/or a test module, may
cause network card 132 to send various requests to one or
more specific ports on a server computer to determine which
services, if any, are available on a first set of ports; processing
logic 130, and/or a test module, may cause network card 134
to send various requests to one or more specific ports on a
server computer to determine which services, if any, are avail -
able on a second, different set of ports. Accordingly, network
card 132 may send a request to access server computer 150
via port 22 using SSH, and network card 134 may send a
request to transfer a file to server computer 150 via port 21
using FTP. If server computer 150 responds to the request
from network card 132 using SSH, even to reject the request
for invalid credentials according to the SSH protocol, then
processing logic 130 and/or a test module may use one or
more of the methods and systems discussed herein to cause a
plurality of network cards controlled by scan head computer
120 to simulate a bot-net carrying out a brute force attack on
server computer 150 to discover a valid set of credentials.

A server administrator may cause a service on a server
computer to wait for, and/or respond to, requests over a non-
standard port. For example, a server administrator may con-
figure an SSH service to wait for, and/or respond to, requests
over port 3000. In response to network card 132 receiving a
response to a request on port 3000, processing logic 130
and/or a test module may use one or more of the methods and
systems discussed herein to determine which service is
executing on port 3000. For example, processing logic 130
may cause network card 132 to send an HT'TP request to port
3000, and cause network card 134 to send an SSH request to
port 3000. The response by the server computer to the HTTP
request may be different than the response to the SSH request.
Processing logic 130 may determine from the response to the
HTTP request that the server computer is not executing a
particular web service on port 3000 because the response
does not comply with the HyperText Transter Protocol; how-
ever, processing logic 130 may determine from the response
to the SSH request that the server computer is executing an
SSH service on port 3000 because the response complies with
the SSH protocol.

4.0 Example Computer System for Simulating a
Plurality of Attacks from One or More Bot-Nets
Using a Library of Test Modules

FIG. 3 illustrates a computer system for detecting a plural-
ity of vulnerabilities and errors in a web-server by simulating

US 9,178,903 B1

11

a bot-net in an example embodiment. In FIG. 3, system 300
includes test module manager computer 310, scan head com-
puter 320, scan head computer 330, embedded device 340,
testing proxy server computer 350, consultant computer 302,
test module and data store 304, web server computer 390,
geographic region 392, geographic region 394, and geo-
graphic region 396 communicatively coupled over one or
more computer networks. While each of the components
listed above is illustrated as if running on a separate, remote
computer from each other, one or more of the components
listed above may be part of and/or executed on the same
computer. For example, test module manager computer 310,
scan head computer 320, scan head computer 330, testing
proxy server computer 350, consultant computer 302, and test
module and data store 304, and/or each of their components,
may be part of, included in, and/or executed on the same
computer, local area, and/or wide area network. For purposes
of illustrating a clear example, web server computer 390 is
referred to as a web server computer executing a web service,
such as HTTP and/or HTTPS. However, additionally or alter-
natively, web server computer 390, like server computer 150,
may execute one or more other services, such as SSH and/or
FTP.

In an embodiment, each of the functional units of system
300 may be implemented using any of the techniques further
described herein in connection with FIG. 7; for example, the
test module manager computer 310, scan head computer 320,
scan head computer 330, testing proxy server computer 350,
data store 304, consultant computer 302, and/or web server
computer 390 may each comprise a general-purpose com-
puter configured with one or more stored programs which
when executed cause performing the functions described
herein for the intermediary computer, or a special-purpose
computer with digital logic that is configured to execute the
functions, or digital logic that is used in other computing
devices. While the figures include lines that indicate various
devices and/or modules being communicatively coupled,
each of the computers, devices, modules, storage, and con-
figurations may be communicatively coupled with each other.
For example, test module manager computer 310, scan head
computer 320, scan head computer 330, embedded device
340, testing proxy server computer 350 data store 304, and/or
consultant computer 302 may be in the different geographic
regions. However, each of the components above may be
included in the same geographic region. For example, test
module manager computer 310, data store 304, scan head
computer 320, scan head computer 330, embedded device
340 and testing proxy server computer 350 may be in the
same building, data center, and/or location. Additionally or
alternatively, one or more of the components or functional
units discussed herein may be behind, or routed through, the
same router, carrier, and/or other gateway to the Internet
and/or one or more other external computer networks.

One or more computers, modules, and/or logic may
“execute” an application, library, process, module, and/or
other logic on a computing device. “Executing” an applica-
tion, process, module and/or logic may include launching,
loading, spawning, interpreting, and/or executing the appli-
cation, process, and/or a computer, module, and/or logic.

4.1 Test Module Manager Computer

Test module manager computer 310 may comprise test
control logic 312, which may maintain and control one or
more test modules configured to detect and/or exploit vulner-
abilities of a server computer. Test control logic 312 may
determine which test modules are executed, and in which
order. Test control logic 312 may evaluate results produced
from executing a first test module, and determine whether one

10

15

20

25

30

35

40

45

50

55

60

12

or more other test modules should be executed. Additionally
or alternatively, test control logic 312 may pass the results to
one or more other test modules.

A test module may be software, such as an executable
computer program, and/or data, such as structured data, that is
executable by a computer, such as test module manager com-
puter 310, scan head computer 320, embedded device 340,
testing proxy server computer 350, and/or other computer.
Additionally or alternatively, a test module may be software
and/or data that may cause a processing logic to perform one
or more tests against a target system. For example, a first test
module may cause application 344 to send data through
request processing logic 352 to web server computer 390. A
second test module may cause request processing logic 352 to
store intercepted data in data store 304. A third test module
may cause processing logic 322 to send a plurality of requests
to a server computer, through a plurality of regions, based on
the data intercepted by request processing logic 352.

Test control logic 312 may coordinate one or more tests on
different computers. For example, test control logic 312 may
cause a first test module to be executed on embedded device
340 through processing logic 342, which causes application
344 to make a request to web server computer 390 through
testing proxy server computer 350. Test control logic 312 may
cause a second test module to be executed concurrently
through request-processing logic 352, which may detect
which port the request was sent over, one or more parameters
that were used, one or more data elements that were sent,
and/or any other attributes of the request. Test control logic
312 may store one or more test modules, data, applications,
input data for one or more test modules, output data generated
based on an application and/or test module, and/or data
describing one or more vulnerabilities and errors detected in
or more applications and/or web server computers.

Test control logic 312 may cause a test module to be
executed in response to results from another test module. For
purposes of illustrating another clear example, assume that a
second test module indicates that a application 344 sent data
to web server computer 390 over port 443, indicating that the
data was encrypted using HTTPS. In response, test control
logic 312 may cause scan head computer 320 and/or scan
head computer 330 to execute one or more test modules that
test for one or more HTTP and/or Secure Socket Layer
(“SSL”) vulnerabilities, such as a particular vulnerability that
allows an attacker to read data stored in the memory of unpro-
tected server computer.

Test control logic 312 may be a state machine that causes
one or more test modules to be executed based on the results
generated by one or more other test modules and/or other
parameters. For example, test control logic 312 may be con-
figured to cause a particular module, “X”, to be executed if,
and/or in response to determining that, (1) X has not be
executed within the last fifteen minutes, (2) both modules “Y”
and “Z” have been executed since the last time X was
executed, and (3) Y produced a particular result; test control
logic 312 need not cause X to be executed otherwise.

4.2 Scan Head Computers

Scan head computer 320 and scan head computer 330 are
similar to scan head computer 120 discussed in detail herein.
In FIG. 3, scan head computer 320 and scan head computer
330 may each include a router and/or other logic configured to
send and/or receive data from each network card to a particu-
lar geographic region. For example, network card 324 and
network card 336 may be configured to send and/or receive
data through geographic region 394. Network card 326 may
be configured to send and/or receive data through geographic

US 9,178,903 B1

13

region 392. Network card 334 may be configured to send
and/or receive data through geographic region 396.

Scan head computer 320 and scan head computer 330
include processing logic 322 and processing logic 332,
respectively. Processing logic 322 and processing logic 332
may execute one or more test modules, and/or results gener-
ated from one or more test modules, stored in data store 304.
Processing logic 322 and processing logic 332 may send
results generated from one or more test modules to test mod-
ule manager computer 310 and/or data store 304. Addition-
ally or alternatively, processing logic 322 and/or processing
logic 332 may pass results generated from a recently executed
test module to a test module subsequently executed on the
same scan head computer, and/or by the same processing
logic. Additionally or alternatively, processing logic 322 and/
or processing logic 332 may send data to each other through
one or more network, shared memory, control test module
manager computer 310 and/or any other mechanism and/or
structure.

4.3 Embedded Device

Embedded device 340 may be an embedded device.
Embedded device 340 may comprise one or more processors
and/or memory. For example, embedded device 340 may be a
smart phone. Embedded computing devices, such as smart
phones and tablet computers, may be used to perform one or
more specialized and/or dedicated functions. An embedded
device may include components not normally provided on
typical desktop computers, such as cellular radio modems,
motion sensors, cameras, lights, global positioning system
receivers, and other inputs. Embedded devices often include
specialized hardware configurations. For example, a smart
phone may include a processor that is optimized to minimize
power consumption, which may allow the phone to operate
longer before needing to be recharged. Embedded devices
that have a built-in display may include specialized hardware
configured to provide a higher refresh rate for the particular
built-in display. In FIG. 1, test module manager computer 310
is coupled to a single embedded device; however, test module
manager computer 310 may be coupled to, and/or cause one
or more applications and/or test modules to be executed on,
more than one embedded device.

Embedded device 340 may comprise application 344,
which may be a specialized version of a particular applica-
tion, which embedded device 340 may execute. Applications
that run on embedded devices may be specialized based on
the target embedded device(s). For example, source code and
content for a particular application or project may be com-
piled and packaged to produce a first specialized application
configured to be executed on a first embedded device with a
first set of hardware. The same source code and content may
be compiled and packaged again to produce a second, differ-
ent specialized application configured to be executed on a
second embedded device with a second, different set of hard-
ware.

Embedded device 340 comprises processing logic 342.
Processing logic 342 may be specialized hardware and/or
software for embedded device 340 and/or application 344.
Processing logic 342 may be executed by embedded device
340 and/or an application running on embedded device 340,
such as an operating system or application 344. For example,
processing logic 342 may be a pre-compiled, shared, and/or
dynamically linked library specialized for the hardware and/
or software configuration of embedded device 340. Applica-
tion 344 may, at run-time, load processing logic 342 and
cause one or more methods in processing logic 342 to be
executed. Additionally or alternatively, processing logic 342

10

15

20

25

30

35

40

45

50

55

60

65

14

may, at run-time, load a test module and cause one or more
methods in application 344 and/or processing logic 342 to be
executed.

Processing logic 342 may receive one or more test modules
and/or data associated with the one or more test modules,
such as parameters, metadata, and/or results from one or more
other test modules. Processing logic 342 may execute the one
or more test modules. Processing logic 342 may send results
generated from one or more test modules to test module
manager computer 310, test control logic 312, and/or data
store 304. Additionally or alternatively, processing logic 342
may pass results generated from a recently executed test
module to a test module subsequently executed on embedded
device 340, and/or by processing logic 342.

Processing logic 342, and/or a test module executed by
processing logic 342, may be executed as if part of application
344. Processing logic 342, and/or a test module executed by
processing logic 342, may be executed in parallel with appli-
cation 344. Processing logic 342, and/or a test module
executed by processing logic 342, may have access to the
memory, hardware, modules, and/or other resources on
embedded device 340 and/or in application 344, as if part of
application 344. Processing logic 342, and/or a test module
executed by processing logic 342, may be communicatively
coupled with test module manager computer 310 and/or test
control logic 312. Processing logic 342, and/or a test module
executed by processing logic 342, may be created by a first
entity, such as a testing facility, and application 344 may be
created by a second, different entity, such as an application
developer.

4.4 Testing Proxy Server Computer

Testing proxy server computer 350 may be a computer that
is communicatively coupled with one or more embedded
devices, control computers, external networks, and/or web
server computers. For example, testing proxy server com-
puter 350 may be communicatively coupled to embedded
device 340, test module manager computer 310, web server
computer 390, and the Internet.

Testing proxy server computer 350 may comprise request-
processing logic 352, which intercepts and/or processes data
sent from and/or to one or more embedded devices. Request-
processing logic 352 may test and/or detect one or more
vulnerabilities in one or more applications on one or more
embedded devices in concert with test control logic 312,
processing logic 342, processing logic 322 or processing
logic 332. Request-processing logic 352 may report vulner-
abilities to test control logic 312. Request-processing logic
352 may store attributes and/or vulnerabilities related to one
or more applications on one or more embedded devices and/
or a web server computer, such as web server computer 390,
to data store 304.

Request-processing logic 352 may receive one or more test
modules, metadata, parameters, and/or any other data related
to a test module from test control logic 312. Request-process-
ing logic 352 may execute one or more test modules on testing
proxy server computer 350. A test module executed on testing
proxy server computer 350 may perform one or more of the
operations and/or functions discussed herein. Request-pro-
cessing logic 352 may send results generated from one or
more test modules to test module manager computer 310, test
control logic 312, and/or data store 304. Additionally or alter-
natively, request-processing logic 352 may pass results gen-
erated from a recently executed test module to a test module
subsequently executed on embedded device 340, and/or by
request-processing logic 352.

One or more test modules executed by request processing
logic 352 may, among other things, extract API calls to a

US 9,178,903 B1

15

server computer from a client application, determine whether
data from and/or to a client application is secure, and/or test
the security of a server computer. For example, request-pro-
cessing logic 352 may intercept one or more requests and/or
transmissions to a server computer, such as web server com-
puter 390, from one or more other computers, such as embed-
ded device 340 and/or a general purpose computer. Request
processing logic 352 may store data in, and/or about, the
requests and/or transmissions in data store 304 to re-create
the requests and/or transmissions. The data may include
URLSs, parameter names, values, and/or any other content.
One or more testing modules executed by processing logic
322, processing logic 332, and/or request processing logic
352 may re-generate requests and/or transmissions to the
same server computer that the original requests and/or trans-
missions were made to, and/or a different server computer.
The requests and/or transmission may include the same data
as the original requests and/or transmissions. Additionally or
alternatively, the requests and/or transmissions may include
data that was not in the original requests and/or transmissions.

4.5 Storage and Memory

A data store and/or storage may be one or more databases,
configuration files, file systems, computers, and/or data struc-
tures that store data in volatile and/or non-volatile memory.
Storage, data stores, and/or memory may mean any non-
volatile and/or volatile memory components capable of stor-
ing data, including electronic digital data storage devices.
Data store 304 may be a data store that stores one or more test
modules, applications, and/or data related to, and/or associ-
ated with, the one or more test modules and/or applications.
For example, data store 304 may store a first test module to be
executed in concert with a particular application stored in data
store 304. Data store 304 may store one or more input param-
eters and/or data set used as input for the test module and/or
application. Data store 304 may store results generated the
test module and/or application.

4.6 Consultant Computers

Consultant computer 165 broadly represents any computer
that may be used to retrieve and/or store a test module, appli-
cation, and/or data associated with a test module and/or appli-
cation from data store 304. The particular role of the user of
the computer is not critical and the label “consultant” is used
here merely for convenience to illustrate a clear example. A
user, such as a computer security consultant, may use con-
sultant computer 165 to create, store, and/or retrieve one or
more test modules, encrypted applications, decrypted appli-
cations, and/or data related to, and/or associated with, the or
more test modules and/or applications. The user may view
results from one or more test modules stored on data store 304
on a display coupled to consultant computer 302.

4.7 Test Modules

A test module may be a configured to test for robustness or
security of one or more server computers and/or applications.
For example, request-processing logic 352 may execute a test
module configured to determine whether application 334 is
sending one or more requests to web server computer 390
over SSL. If so, the test module may reference another test
module that is configured to cause test control logic 312,
through one or more scan head computers, to test whether
web server computer 390 is vulnerable to an attack that
exploits one or more vulnerabilities in a particular SSL imple-
mentation.

A test module may be configured to test for robustness or
security of a particular application and/or web server com-
puter. For example, after a consultant determines the URL
and the names of one or more parameters for logging into web
server computer 390 as a valid user, the consultant may create

10

15

20

25

30

35

40

45

50

55

60

65

16

atest module configured to determine a login and password of
a different valid user using a brute force attack, the particular
URL, and the one or more parameter names, through one or
more scan heads.

A consultant may define one or more parameters, depen-
dencies, and/or conditions under which a test module should
be executed, for each test module uploaded. For example, a
consultant, through consultant computer 302 may store meta-
data in data store 304 indicating that a first test module should
be executed first, and if a particular result is generated by the
first test module, then a second test module should be
executed and the results from the first test module should be
passed to the second test module.

Each test module may be written in one or more computer
programming languages, scripting languages, and/or any
other standard and/or proprietary instruction sets or struc-
tured data formats. For example, a first test module may be a
pre-compiled, dynamically linkable library that may be
executed by, and/or loaded into, a specialized application
and/or logic on a particular hardware configuration, such as
embedded device 340. A second test module may be an
executable script, which may be executed by a virtual
machine running on one or more computers with different
hardware configurations, such as scan head computer 320,
scan head computer 330, and/or testing proxy server com-
puter 350.

5.0 Process Overview

One or more consultants may upload one or more test
modules to be executed by one or more processing logic units
on one or more computers. Test control logic may coordinate
executing test modules across one or more processing logic
units. Test control logic may store results in a data store, use
the results as input while executing one or more other test
modules, and/or determine whether one or more other test
modules should be executed based on the results. Embodi-
ments provide testing for errors and/or vulnerabilities in one
or more web server computer and/or embedded devices.

5.1 Receiving a Plurality of Test Modules

FIG. 4 illustrates a process for executing one or more test
modules in an example embodiment. In step 410, a control
computer receives a test module. For example, a consultant
may store the following test modules in data store 304: test
module 510, test module 520, test module 522, test module
524, test module 530, and test module 532.

5.2 Selecting Test Modules to Execute

A consultant and/or other user may store metadata in data
store 304 indicating one or more conditions and/or states
under which a test module should be executed. The states may
be based on the state of system 300, one or more components
of'system 300, one or more target systems, and/or one or more
components of a target system. For purposes of illustrating a
clear example, assume the following: a first state indicates
whether a server computer, such as web server computer 390,
accepts data sent by a client computer to a first URL and
returns the same data to a client computer in response to a
request to a second URL; and, a second state indicates
whether the data was received as part of an HTML document.
In response to determining the first state is positive, test
control logic 312 may execute a first test module that attempts
to perform a SQL injection attack against the server computer
using the first URL to inject one or more SQL statements and
the second URL to determine whether the SQL statements
were executed. In response to determining the first state and
the second state are positive, test control logic 312 may
execute a test module that attempts to perform a JavaScript

US 9,178,903 B1

17

injection attack. However, test control logic 312 need not
execute the second test module if the second state is not
positive because even if JavaScript could be injected into the
data, the target server and/or client devices may not be con-
figured to execute the JavaScript rendering the attack moot.
States may indicate, among other things, a frequency at which
a test module should be executed, whether one or more other
test modules were executed successfully, data generated from
executing one or more other modules, one or more hardware
configurations and/or dependencies, and/or network features.
A state may be a parameter for a test module. For instance, in
the current example, the first state included two URLs that
which were used by the first testing module.

5.2.1 Scheduling Test Modules to Execute

In step 420, the control computer determines a frequency at
which the test module should be executed. For example, the
consultant may store metadata in data store 304 indicating
that test module 510 should be executed each time a new
version of application 344 is released. A consultant may store
metadata in data store 304 indicating under what conditions a
test module should be executed. For example, test module
520 should be executed each week until test module 510 fails
to return a particular result after a new version is released.
Accordingly, test control logic 312 may retrieve the metadata
and determine how often, and/or under what conditions, test
module 510 should be executed. The metadata for a particular
test module may define a region-request frequency for each
test module.

5.2.2 Determining Module Dependencies

In step 430, the control computer determines dependen-
cies, if any, on other test modules. For purposes of illustrating
clear example, assume the consultant stored metadata in data
store 304 indicating that test module 520 and test module 530
depend on test module 510, test module 522 and test module
524 depend on test module 520, and test module 532 depends
on test module 530. Test control logic 312 may generate an
in-memory hierarchy similar to the data structure in FIG. 5.
FIG. 5 illustrates a hierarchy of dependencies between test
modules in an example embodiment. In FIG. 5, test module
520 depends on test module 510 as indicated by dependency
reference 511. Each test module in FIG. 5 expressly depends
on a single other test module; however, a test module may
expressly depend on one or more other test modules. For
example, in an embodiment, test module 524 may depend on
both test module 520 and test module 530, which may each
depend on test module 510.

A first test module may depend on a second test module if
the first test module should be executed concurrently with the
second test module, and/or process one or more results based,
at least in part, by the second test module. For example, test
module 510 may be executable by processing logic 342, and
may be configured to cause application 344 to generate one or
more requests to web server computer 390. Test module 520
may be a test module that is executable by request-processing
logic 352, and configured to determine whether the requests
made by application 344 are made over the HTTPS protocol.
Test module 520 may also determine whether application 344
will accept SSL certificates signed by an untrusted source, by
responding to requests from application 344 with a self-
signed SSL certificate. Thus, test module 520 depends on test
module 510 to determine whether requests made by applica-
tion 344 are being sent over HTTPS.

5.2.2.1 Executing Test Modules Based on Dependencies

A first test module that depends on a second test module
need not be executed if the second test module fails, and/or
generate a particular outcome or result. For purposes ofillus-
trating a clear example, assume test module 510 is configured

10

15

20

25

30

35

40

45

50

55

60

65

18

to cause application 344 to perform one or more operations,
test module 520 is configured to determine whether a network
request from application 344 to web server computer 390 was
made over SSL, and test module 530 is configured to deter-
mine whether the data returned was generated by web server
computer 390 using a PHP engine. Iftest module 510 does not
cause application 344 to generate a request to web server
computer 390, then test module 520 and test module 530 need
not be executed. Further assume that test module 532 is con-
figured to perform test one or more vulnerabilities in particu-
lar implementations of a PHP engine. In the current example,
test module 530 need not be executed, and since test module
532 depends on test module 530, then test module 532 need
not be executed.

5.2.3 Selecting System and/or Hardware Configurations

In step 440, the control computer may determine which
hardware configuration is required for each module. For
example, a consultant may store data in, and test control logic
312 may retrieve data from, data store 304 indicating that test
module 510 is configured to be executed on embedded device
340, test module 520 is configured to be executed on testing
proxy server computer 350, and test module 522 is configured
to be executed on a scan head computer that can send requests
from geographic region 394 and/or geographic region 392.
Additionally or alternatively, the metadata may indicating
that test module 522 is configured to be executed on a scan
head computer that is controls at least a particular number of
network cards, connected through at least a particular number
of distinct geographic regions, and/or is assigned at least a
particular number of unique IP addresses through one or more
carriers.

5.3 Distributing Test Modules to be Executed on One or
More Computers

In step 450, the control computer queues a job that identi-
fies a test module. For purposes of illustrating clear example,
assume test control logic 312 maintains a queue of jobs, and
each job may identify one or more test modules that are ready
to be executed according to the metadata associated with each
module. Furthermore, test module 530 is configured to cause
a scan head computer to crawl a web site hosted on web server
computer 390 to determine which page(s), if any, are gener-
ated using PHP (a server-side scripting language). Test con-
trol logic 312 may determine that test module 530 should be
executed against a particular domain based on the results
from one or more other test modules and/or metadata associ-
ated with test module 530. Accordingly, test control logic 312
may queue a job referencing test module 530, along with
parameters, such as the particular domain name and a region-
request frequency value.

In step 460, the control computer receives a request for a
test module with one or more parameters. For example, pro-
cessing logic 322 may send a request to test control logic 312
for a test module to execute. The request may indicate that
processing logic 322 can simulate a bot-net, and can execute
a test module based on range of region-request frequency
values.

In step 470, the control computer dequeues the job. For
purposes of illustrating a clear example, assume that test
control logic 312 determines that scan head computer 320
and/or processing logic 322 is configured to execute test
module 530 according to the parameters stored in the job
queued in step 450. Test control logic 312 may dequeue the
job queued in step 450 and send test module 530, along with
the parameters stored in the dequeued job, to processing logic
322.

US 9,178,903 B1

19

5.4 Executing a Test Module

FIG. 6 illustrates a process for requesting and executing
one or more test modules on a scan head in an example
embodiment. For purposes of illustrating a clear example,
assume that test module 530 is a test module that is configured
to be executed on a computer that simulates a bot-net. In step
610, the scan head computer requests a test module to execute
based on features of a scan head. For example, processing
logic 322 may send a request to test control logic 312 for atest
module to execute. The request may indicate that processing
logic 322 can simulate a bot-net, and is assigned a particular
number of different IP addresses and/or is configured to send
requests through specific geographic regions, such as geo-
graphic region 392 and geographic region 394.

In step 620, the scan head computer receives the test mod-
ule and one or more parameters. For example, in response to
the request in step 610, processing logic 322 may receive test
module 530 from test control logic 312, along with one or
more parameters. For purposes of illustrating a clear example,
assume a first parameter is a region-request distribution value,
asecond parameter is a domain name that points to web server
computer 390, and a third parameter is a cookie that identifies
a particular authorized user account, which was created by a
previously executed test module through application 344 on
embedded device 340, stored on web server computer 390.

5.4.1 Simulating a Bot-Net Based on a Test Module

In step 630, the scan head computer sends a plurality of
requests through a plurality of geographic regions. For pur-
poses of illustrating a clear example, assume test module 530
is configured to cause scan head computer 320 to crawl a web
site hosted on web server computer 390 to determine which
page(s), if any, are generated using PHP (a server-side script-
ing language). Processing logic 322 may execute test module
530, causing processing logic to send a request to a web server
computer 390 through network card 324 and geographic
region 394 based on the domain name received in the previous
step. Processing logic 322 may receive a first web page from
web server computer 390, and traverse the web page to find
links to one on more web pages in the same domain. Process-
ing logic 322 may generate a request for each link found and
send each request through a network card and geographic
region according to the frequency-request distribution value
received in step 620. Processing logic 322 may recursively
and/or iteratively crawl the web site looking for a particular
amount of time, until particular number of unique web pages
have been received, and/or until one or more other parameters
are satisfied.

In step 640, the scan head computer collects data received
from the plurality of requests. For example, processing logic
322 may determine which pages were generated based on
PHP script. Processing logic 322 may determine whether a
web page was generated based on a PHP script using one or
more techniques. For example, the if the URL that was used
to request the web page included the characters “.php”, then
processing logic 322 may determine that the page was gen-
erated, at least partially, using a PHP script. Additionally or
alternatively, processing logic 322 may determine that the
page was generated, at least partially, using a PHP script if a
header value includes the characters “PHP”. For purposes of
illustrating a clear example, assume test module 530 deter-
mines that at least one web page was generated, at least
partially, using a PHP script.

In step 650, the scan head computer stores the data in a data
store. For example, processing logic 322 may send data indi-
cating which page(s), if any, in the web site hosted on web

10

15

20

25

30

35

40

45

50

55

60

65

20

server computer 390 are generated based on PHP to test
control logic 312. Test control logic 312 may store the data in
data store 304.

5.4.2 Automatically Executing a Test Module Referenced
by a Recently Executed Test Module

In step 660, the scan head computer determines whether
the test module references a second test module. If the test
module does not include a reference to another test module,
then control may proceed to step 610 and request a new test
module from test control logic 312. Otherwise, control logic
may proceed to step 670. For purposes of illustrating a clear
example, assume test module 530 includes forward reference
531, which indicates that test module 532 should be executed
after test module 530 is executed if at least one web page was
deemed to have been generated at least in part by PHP, and
test module 532 is configured to send one or more requests
that exploit an vulnerability in a particular PHP implementa-
tion. Inresponse to determining that at least one web page was
generated at least in part by PHP in step 640, control proceeds
to step 670.

In step 670, the scan head computer requests the second
test module. For example, processing logic 322 may retrieve
test module 532 from data store 304, and return to step 620. In
step 620, processing logic 322 may retrieve parameters for
test module 532 from data store 304 and/or test control logic
312. Additionally or alternatively, processing logic 322 may
use the data generated by test module 530 in step 640. For
example, processing logic 322 may pass the data generated
from executing test module 530 to test module 532. Process-
ing logic 322 may then execute test module 532. Processing
logic 322 may use the same region-request frequency value as
received for test module 530, a default region-request fre-
quency value, and/or a region-request frequency value stored
in metadata that is associated with test module 532 in data
store 304.

5.5 Verifying the Test Modules Executed Correctly

Returning now to FIG. 4, in step 480, the control computer
determines whether the test module was executed correctly. If
not, control may proceed to step 450; otherwise, control may
proceed to step 490. There are many ways to determine which
test modules are being executed and determining whether any
of the test modules failed to be executed correctly. For
example, if test control logic 312 receives results from a
processing logic 322 after executing test module 530, then
test control logic 312 may determine that test module 530 was
executed correctly, and may proceed to step 490. If, however,
test control logic 312 receives an error, and/or fails to receive
results, from processing logic 322, test control logic 312 may
proceed to step 450. In step 450, test control logic 312 may
re-queue the job that was dequeued in step 470; the job may
reference test module 530 and include the same metadata.
The consultant that created and/or stored the test module that
was not executed correctly, an administrator, and/or other
user, may be notified via an email, text message, alert, and/or
other notification that indicates the test module did not
execute correctly and whether one or more particular errors
were generated.

In step 490, the control computer determines whether
another test module is dependent on the recently executed test
module. If so, then control may proceed to step 450; other-
wise, control may proceed to step 410. For example, test
control logic 312 may determine that test module 532
depends on test module 530. In response, test control logic
312 may queue a job that references test module 532 and
includes a set of metadata comprising results returned from
processing logic 322 after executing test module 530.

US 9,178,903 B1

21

5.6 Executing More than One Test Module

In the examples discussed above, a processing logic may
execute a test module, and upon finishing the test module may
request and execute a new test module. However, a processing
logic may request and/or execute more than one test module
concurrently.

The number of test modules a processing logic may
execute concurrently may be configurable based on the pro-
cessing logic, the hardware and/or software stack of the com-
puter the processing logic is being executed on, and/or one or
more preferences stored in data store 304. For example, pro-
cessing logic 342 may be a dynamic library that is loaded by
application 344 at run-time, and configured to load a test
module into memory on embedded device 340 to test appli-
cation 344. Two test modules running concurrently in the
same isolated sandbox and/or memory space as application
344 may cause chaotic results; thus, processing logic 342 may
be configured to execute a single test module at a time per
application. However, if multiple applications are running on
embedded device 340, and each application dynamically
loads processing logic 342 into each application’s isolated
sandbox and/or memory space, then each instance of process-
ing logic 342 may load a test module into the application’s
isolated sandbox.

In contrast, in an embodiment, processing logic 322 may
be a stand-alone application running on scan head computer
320. Each test module executed by processing logic 322 may
be a standalone application that is executed by scan head
computer 320, and configured to send and/or receive data
through processing logic 322. Accordingly, processing logic
322 may be configured to request and/or execute more than
one test module concurrently on scan head computer 320.

6.0 Re-Executing Modules after Determining a
Failure has Occurred Using a Matrix or State Table

Test control logic 312, an administrator, a consultant, and/
or other logic or user may determine that a particular test
module was executed incorrectly, and/or one or more param-
eters should be changed. In response, test control logic 312
may cause the particular test modules, and any dependent test
modules, to be re-executed with a corrected set of one or more
parameters. The one or more parameters may be one or more
states that indicate whether a test module should be executed.
Additionally or alternatively, the one or more parameters may
be used as input by the test module. The one or more results
may be one or more states that indicate whether a second test
module should be executed. Additionally or alternatively, the
one or more results may be used as input by the second test
module. The first test module may, but need not be, different
than the second test module.

There are many ways to determine which modules should
be re-executed with which parameters. For example, test con-
trol logic 312 may maintain a matrix, which may also be
referred to as a state table, to determine which modules were
executed with which parameters and/or states. For purposes
of illustrating a clear example, assume Matrix 1 is an excerpt
of a matrix that indicates which modules were executed with
which parameters.

Matrix 1:
510 First set of one or more First set of one or more results
parameters
520 First set of one or more results Second set of one or more

results

10

15

20

25

30

35

40

45

50

55

60

65

-continued
Matrix 1:
510 Second set of one or more Third set of one or more
parameters results
520 Third set of one or more Fourth set of one or more

results results

In Matrix 1, in the first column of each row, a test module
that has been executed is identified, the second column indi-
cates the set of parameters that were used, and the third
column indicates the set of results that are generated. For
example, the first row of Matrix 1 indicates that test module
510 was executed based on a first set of one or more param-
eters. The second row of Matrix 1 indicates that test module
520 was executed based on results generated from test mod-
ule 510 and the first set of one or more parameters. The third
row indicates that test module 510 was executed based on a
second set of one or more parameters. The third row indicates
that test module 520 was executed based on results generated
from test module 510 and the second set of one or more
parameters.

In response to determining that the first set of parameters
was incorrect, invalid, and/or modified, test control logic 312
may cause each module that was executed based on the first
set of parameters to be re-executed using one or more meth-
ods and systems discussed herein. In the current example, test
control logic 312 may cause test module 510 to be re-ex-
ecuted and regenerate the first set of one or more results. If a
previously generated set of results was used as input for one
or more other test modules, then test control logic 312 may
traverse the matrix and cause each of the one or more other
test modules to be re-executed using the updated results using
one or more of the methods and systems discussed herein. For
example, test control logic 312 may determine, based on the
matrix, that test module 520 was executed based on results
that have been updated. In response, test control logic 312
may re-execute test module 520 using one or more the sys-
tems and methods discussed herein.

Test control logic 312 may determine whether one or more
additional modules should be executed based one or more
updated parameters and/or one or more updated results. For
example, after re-executing test module 510 with a modified
set of parameters, the first set of results may be different, and
may indicate a different set of states under which one or more
additional test modules should be executed. Accordingly, test
control logic 312 may cause the one or more additional test
modules to be executed based on the new, different first set of
results. Additionally or alternatively, test control logic 312
may determine whether one or more entries in the matrix
should be deleted. For example, after re-executing test mod-
ule 510 with a modified first set of parameters, the first set of
results may be different indicating that test module 520 need
not be executed based on the first set of results. Accordingly,
the row indicating that test module 520 was executed using
the first set of results may be deleted from the matrix.

A second test module, however, need not be re-executed
merely because it depends on a module that was re-executed.
For example, after test module 510 is re-executed and updates
the first set of results, test control logic 312 may cause test
module 520 to be re-executed based on the updated first set of
results. However, test control logic 312 need not re-execute
test module 520 based on the third set of one or more results
because there is no apparent relation between the third set of
one or more results and the updated first set of one or more
results.

US 9,178,903 B1

23

If'a test module is updated, then test control logic 312 may
re-execute the updated test module and each dependent mod-
ule for each set of results that are regenerated. For example, if
test module 510 is updated by a consultant, then, based on the
matrix, test control logic 312 may execute test module 510
twice: once using the first set of one or more parameters, and
again using the second set of one or more parameters, which
may change the first set of one or more results and the third set
of one or more results. If the first set of one or more results is
changed, then test control logic 312 may re-execute test mod-
ule 520 based on the updated first set of one or more results.
If the third set of one or more results is changed, then test
control logic 312 may re-execute test module 520 based on
the updated third set of one or more results.

Test control logic 312 may create a new entry in the matrix
each time a test module is executed based on a new data set.
Each entry may comprise the test module executed, the set of
states and/or input parameters, if any, and the set of output
states and/or results, if any. Test control logic 312 need not
create a new entry in the matrix after re-executing a test
module in response to determining that a test module and/or
set of parameters were updated.

7.0 Implementation Mechanisms—Hardware
Overview

According to one embodiment, the techniques described
herein are implemented by one or more special-purpose com-
puting devices. The special-purpose computing devices may
be hard-wired to perform the techniques, or may include
digital electronic devices such as one or more application-
specific integrated circuits (ASICs) or field programmable
gate arrays (FPGAs) that are persistently programmed to
perform the techniques, or may include one or more general
purpose hardware processors programmed to perform the
techniques pursuant to program instructions in firmware,
memory, other storage, or a combination. Such special-pur-
pose computing devices may also combine custom hard-
wired logic, ASICs, or FPGAs with custom programming to
accomplish the techniques. The special-purpose computing
devices may be desktop computer systems, portable com-
puter systems, handheld devices, networking devices or any
other device that incorporates hard-wired and/or program
logic to implement the techniques.

For example, FIG. 7 is a block diagram that illustrates a
computer system 700 upon which an embodiment of the
invention may be implemented. Computer system 700
includes a bus 702 or other communication mechanism for
communicating information, and a hardware processor 704
coupled with bus 702 for processing information. Hardware
processor 704 may be, for example, a general purpose micro-
processor.

Computer system 700 also includes a main memory 706,
such as a random access memory (RAM) or other dynamic
storage device, coupled to bus 702 for storing information and
instructions to be executed by processor 704. Main memory
706 also may be used for storing temporary variables or other
intermediate information during execution of instructions to
be executed by processor 704. Such instructions, when stored
in non-transitory storage media accessible to processor 704,
render computer system 700 into a special-purpose machine
that is customized to perform the operations specified in the
instructions.

Computer system 700 further includes a read only memory
(ROM) 708 or other static storage device coupled to bus 702
for storing static information and instructions for processor

15

25

30

40

45

50

55

24

704. A storage device 710, such as a magnetic disk or optical
disk, is provided and coupled to bus 702 for storing informa-
tion and instructions.

Computer system 700 may be coupled via bus 702 to a
display 712, such as a cathode ray tube (CRT), for displaying
information to a computer user. An input device 714, includ-
ing alphanumeric and other keys, is coupled to bus 702 for
communicating information and command selections to pro-
cessor 704. Another type of user input device is cursor control
716, such as a mouse, a trackball, or cursor direction keys for
communicating direction information and command selec-
tions to processor 704 and for controlling cursor movement
ondisplay 712. This input device typically has two degrees of
freedom in two axes, a first axis (e.g., X) and a second axis
(e.g., y), that allows the device to specify positions in a plane.

Computer system 700 may implement the techniques
described herein using customized hard-wired logic, one or
more ASICs or FPGAs, firmware and/or program logic which
in combination with the computer system causes or programs
computer system 700 to be a special-purpose machine.
According to one embodiment, the techniques herein are
performed by computer system 700 in response to processor
704 executing one or more sequences of one or more instruc-
tions contained in main memory 706. Such instructions may
be read into main memory 706 from another storage medium,
such as storage device 710. Execution of the sequences of
instructions contained in main memory 706 causes processor
704 to perform the process steps described herein. In alterna-
tive embodiments, hard-wired circuitry may be used in place
of or in combination with software instructions.

The term “storage media” as used herein refers to any
non-transitory media that store data and/or instructions that
cause a machine to operation in a specific fashion. Such
storage media may comprise non-volatile media and/or vola-
tile media. Non-volatile media includes, for example, optical
or magnetic disks, such as storage device 710. Volatile media
includes dynamic memory, such as main memory 706. Com-
mon forms of storage media include, for example, a floppy
disk, a flexible disk, hard disk, solid state drive, magnetic
tape, or any other magnetic data storage medium, a CD-ROM,
any other optical data storage medium, any physical medium
with patterns of holes, a RAM, a PROM, and EPROM, a
FLASH-EPROM, NVRAM, any other memory chip or car-
tridge.

Storage media is distinct from but may be used in conjunc-
tion with transmission media. Transmission media partici-
pates in transferring information between storage media. For
example, transmission media includes coaxial cables, copper
wire and fiber optics, including the wires that comprise bus
702. Transmission media can also take the form of acoustic or
light waves, such as those generated during radio-wave and
infra-red data communications.

Various forms of media may be involved in carrying one or
more sequences of one or more instructions to processor 704
for execution. For example, the instructions may initially be
carried on a magnetic disk or solid state drive of a remote
computer. The remote computer can load the instructions into
its dynamic memory and send the instructions over a tele-
phone line using a modem. A modem local to computer
system 700 can receive the data on the telephone line and use
an infra-red transmitter to convert the data to an infra-red
signal. Aninfra-red detector can receive the data carried in the
infra-red signal and appropriate circuitry can place the data
on bus 702. Bus 702 carries the data to main memory 706,
from which processor 704 retrieves and executes the instruc-
tions. The instructions received by main memory 706 may

US 9,178,903 B1

25

optionally be stored on storage device 710 either before or
after execution by processor 704.

Computer system 700 also includes a communication
interface 718 coupled to bus 702. Communication interface
718 provides a two-way data communication coupling to a
network link 720 that is connected to a local network 722. For
example, communication interface 718 may be an integrated
services digital network (ISDN) card, cable modem, satellite
modem, or a modem to provide a data communication con-
nection to a corresponding type of telephone line. As another
example, communication interface 718 may be a local area
network (LAN) card to provide a data communication con-
nection to a compatible LAN. Wireless links may also be
implemented. In any such implementation, communication
interface 718 sends and receives electrical, electromagnetic
or optical signals that carry digital data streams representing
various types of information.

Network link 720 typically provides data communication
through one or more networks to other data devices. For
example, network link 720 may provide a connection through
local network 722 to a host computer 724 or to data equip-
ment operated by an Internet Service Provider (ISP) 726. ISP
726 in turn provides data communication services through the
world wide packet data communication network now com-
monly referred to as the “Internet” 728. Local network 722
and Internet 728 both use electrical, electromagnetic or opti-
cal signals that carry digital data streams. The signals through
the various networks and the signals on network link 720 and
through communication interface 718, which carry the digital
data to and from computer system 700, are example forms of
transmission media.

Computer system 700 can send messages and receive data,
including program code, through the network(s), network
link 720 and communication interface 718. In the Internet
example, a server 730 might transmit a requested code for an
application program through Internet 728, ISP 726, local
network 722 and communication interface 718.

The received code may be executed by processor 704 as it
is received, and/or stored in storage device 710, or other
non-volatile storage for later execution.

6.0 Other Aspects of Disclosure

In the foregoing specification, embodiments of the inven-
tion have been described with reference to numerous specific
details that may vary from implementation to implementa-
tion. The specification and drawings are, accordingly, to be
regarded in an illustrative rather than a restrictive sense. The
sole and exclusive indicator of the scope of the invention, and
what is intended by the applicants to be the scope of the
invention, is the literal and equivalent scope of the set of
claims that issue from this application, in the specific form in
which such claims issue, including any subsequent correc-
tion.

What is claimed is:

1. A computer system comprising:

a memory in a home geographic region;

a processor in the home geographic region coupled to the
memory;

aplurality of network cards in the home geographic region,
coupled to the processor and the memory;

wherein each network card in the plurality of network cards
is configured to send one or more requests to a remote
server computer through a certain geographic region, of
a plurality of geographic regions, that is different than
the home geographic region;

10

15

20

25

30

35

40

45

50

55

60

65

26

wherein, for each network card of the plurality of network
cards, the processor is configured to store in the memory
a geo-mapping, of a plurality of geo-mappings, wherein
the geo-mapping indicates the certain geographic region
the network card is configured to send the one or more
requests to the remote server computer through;

a processing logic coupled to the memory, the processor,
and the plurality of network cards, wherein the process-
ing logic is configured to:

receive one or more first parameters from a device;

produce one or more second parameters based onthe one or
more first parameters, wherein the one or more second
parameters are different than the one or more first
parameters;

produce one or more third parameters based on the one or
more first parameters, wherein the one or more third
parameters are different than the one or more first
parameters and the one or more second parameters;

send a first request with the one or more second parameters
to the remote server computer through a first geographic
region of the plurality of geographic regions;

send a second request with the one or more third param-
eters to the remote server computer a second geographic
region of the plurality of geographic regions.

2. The system of claim 1 comprising a processing logic
coupled to the memory, the processor, and the plurality of
network cards, wherein the processing logic is configured to
generate a plurality of requests, and for each request of the
plurality of requests:

determine that the request should be received by the remote
server computer through a particular geographic region
based on a region-request distribution value;

determine, based on the plurality of geo-mappings stored
in the memory, that a particular network card of the
plurality of network cards is configured to send requests
through the particular geographic region;

send the request to the remote server computer through the
particular network card.

3. The system of claim 2, wherein at least two requests, of
the plurality of requests, are sent through two different net-
work cards of the plurality of network cards, and each net-
work card, of the two different network cards, is configured to
send requests to the remote server computer through a differ-
ent geographic region of the plurality of geographic regions.

4. The system of claim 1 comprising a processing logic
coupled to the memory, the processor, and the plurality of
network cards, wherein the processing logic is configured to:

receive a credential from the device, which an application
executed on the device used to authenticate with the
remote server computer,

send a plurality of requests, which include the credential,
through two or more network cards, of the plurality of
network cards, wherein each network card of the two or
more network cards is associated with a different geo-
graphic region.

5. The system of claim 1, wherein the processing logic is
configured to receive the one or more first parameters sent
from the device to the remote server computer.

6. The system of claim 1 comprising:

a processing logic coupled to the memory, the processor,
and the plurality of network cards, wherein the process-
ing logic is configured to execute a plurality of testing
modules;

a management logic coupled to the memory, the processor,
and the processing logic, wherein the management logic
is configured to, for each testing module of the plurality
of testing modules, determine whether one or more con-

US 9,178,903 B1

27

ditions associated with the testing module are satisfied,
and if so, cause the processing logic to execute the test-
ing module.

7. The system of claim 6, wherein:

the one or more conditions associated with a first testing

module of the plurality of testing modules are based on
results derived from execution of a second testing mod-
ule;

the management logic is further configured to:

cause the processing logic to execute the second testing

module;

determine whether the one or more conditions are satisfied

based on results derived from execution of the second
testing module;

in response to determining that the one or more conditions

are satisfied, causing the processing logic to execute the
first testing module.

8. The system of claim 6, wherein the management logic is
configured to determine from the one or more conditions
associated with a particular testing module, of the plurality of
testing modules, a frequency at which the particular testing
module should be executed, and causing a the processing
logic to execute the particular testing module according to the
frequency.

9. The system of claim 1 comprising:

a processing logic coupled to the memory, the processor,
and the plurality of network cards, wherein the process-
ing logic is configured to execute a plurality of testing
modules, wherein a first testing module, of the plurality
oftesting modules, depends on a second testing module,
of the plurality of testing modules;

amanagement logic coupled to the memory, the processor,
and the processing logic, wherein the management logic
is configured to determine processing logic did not suc-
cessfully execute the second testing module, and in
response, cause the processing logic to execute the sec-
ond testing module successtully before causing the pro-
cessing logic to execute the first testing module.

10. A system comprising:

a first scan head comprising a first memory, a first proces-
sor, a first processing logic, and a first plurality of net-
work cards in a home geographic region, wherein each
network card in the first plurality of network cards is
configured to send one or more network security testing
requests to a remote server computer through a certain
geographic region, of a first plurality of geographic
regions, that is different than the home geographic
region;

a second scan head comprising a second memory, a second
processor, a second processing logic, and a second plu-
rality of network cards in the home geographic region,
wherein each network card in the second plurality of
network cards is configured to send one or more network
security testing requests to the remote server computer
through another particular geographic region, of a sec-
ond plurality of geographic regions, that is different than
the home geographic region;

wherein the first plurality of geographic regions is different
than the second plurality of geographic regions;

a management computer comprising a memory, a proces-
sor coupled to the memory, and a management logic
coupled to the memory, the processor, the first process-
ing logic, and the second processing logic, wherein the
management logic is configured to update a queue of
objects, wherein each object in the queue of objects
identifies a testing module of a plurality of testing mod-
ules, and one or more particular geographic regions;

10

15

20

25

30

35

40

45

50

55

60

65

28

wherein the first processing logic is configured to:

request, from the management logic, a front-most object in
the queue of objects that identifies a first testing module
and one or more first particular geographic regions that
are included in the first plurality of geographic regions;

execute the first testing module identified by the object,
causing one or more request to be sent from the first
plurality of network cards;

wherein the second processing logic is configured to:

request, from the management logic, a front-most object in
the queue of objects that identifies a second testing mod-
ule and one or more second particular geographic
regions that are included in the second plurality of geo-
graphic regions;

execute the second testing module identified by the object,
causing one or more requests to be sent from the second
plurality of network cards.

11. A method comprising:

configuring a plurality of network cards in a home geo-
graphic region to send requests through a plurality of
geographic regions that are different than the home geo-
graphic region;

for each network card of the plurality of network cards,

generating a geo-mapping, of a plurality of geo-map-
pings, that indicates a certain geographic region that the
network card is configured to send the one or more
requests through;

generating a plurality of requests, and for each request of

the plurality of requests:

determining that the request should be received by aremote

server computer through a particular geographic region
based on a region-request distribution value;

determining, based on the plurality of geo-mappings, that a

particular network card of the plurality of network cards
is configured to send requests through the particular
geographic region;

sending the request to the remote server computer through

the particular network card;

receiving one or more first parameters sent from a device;

producing one or more second parameters based on the one

or more first parameters, wherein the one or more first
parameters are different than the one or more second
parameters;
producing one or more third parameters based on the one or
more first parameters, wherein the one or more third
parameters are different than both the one or more first
parameters and the one or more second parameters;

including the one or more second parameters in a first
request of the plurality of requests;

including the one or more third parameters in a second

request of the plurality of requests;

wherein the method is performed on one or more comput-

ing devices.

12. The method of claim 11, wherein at least two requests,
of the plurality of requests, are sent through two different
network cards of the plurality of network cards, and each
network card, of the two different network cards, is config-
ured to send requests to the remote server computer through
a different geographic region of the plurality of geographic
regions.

13. The method of claim 11 comprising:

receiving a credential from a device, which an application

executed on the device used to authenticate with the
remote server computer,

including the credential in each request of the plurality of

requests.

US 9,178,903 B1

29

14. The method of claim 11, wherein the one or more first
parameters were sent from the device to the remote server
computer.

15. The method of claim 11 comprising:

for each testing module of a plurality of testing modules,

determining whether one or more states associated with
the testing module are satisfied, and if so, causing a
processing logic to execute the testing module.

16. The method of claim 11 comprising:

causing a processing logic to execute a first testing module

of a plurality of testing modules;

determining one or more states are set based on results

derived from execution of the first testing module, and in
response, causing the processing logic to execute a sec-
ond testing module.

17. The method of claim 11 comprising determining from
one or more states associated with a particular testing module,
of a plurality of testing modules, a frequency at which the
particular testing module should be executed, and causing a
processing logic to execute the particular testing module
according to the frequency.

18. The method of claim 11, comprising:

determining a first testing module, of a plurality of testing

modules, depends on a second testing module, of the
plurality of testing modules;

determining a processing logic did not successfully

execute the second testing module, and in response,
causing the processing logic to execute the second test-
ing module successfully before causing the processing
logic to execute the first testing module.

#* #* #* #* #*

10

15

20

25

30

30

